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Abstract

A cylindrical shell with a non-circular cross-section consisting of flat sides and circular arc corners is analyzed using

the theorem of minimum potential energy. The three-dimensional analysis builds on previous two-dimensional work.

The potential energy expression for the structure is developed, including first-order transverse shear deformation effects.

All unknown displacements are represented by power series, and the potential energy expression is rewritten in terms of

the summation convention for the power series. The variation of the potential energy expression is taken, leading to a

linear system of equations that is solved for the unknown power series coefficients. With the displacements determined,

stresses are calculated for a composite sandwich construction. An examination of both short shells (less than twice the

boundary layer length) and long shells (more than twice the boundary layer length) is made. The MPE method with

power series is found to predict behavior well for short shells, but not for long shells.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reported herein is the investigation of three-dimensional cylindrical shells with non-circular cross-sec-
tions subjected to constant internal pressure (see Figs. 1 and 2). Both short and long shells (with respect to

bending boundary layer length) are examined, and due to lack of experimental data, the results are com-

pared to a finite element analysis. The work for the three-dimensional case builds on the two-dimensional

analysis described previously in Part I (Preissner and Vinson, 2002a). Part I of this work also gives a

summary of the previous research performed in the areas of the application of the MPE method to shell

structures and the analysis of non-circular cylindrical shells.

International Journal of Solids and Structures 40 (2003) 1109–1137

www.elsevier.com/locate/ijsolstr

* Corresponding author. Address: 1925 Timber Trail, Ann Arbor, MI 48103-2395, USA. Tel.: +1-734-769-1055.

E-mail address: epreissner@hotmail.com (E.C. Preissner).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00655-8

mail to: epreissner@hotmail.com


2. Formulation

The motivation behind using the MPE method was to find practical, approximate (yet accurate) solu-

tions to (ultimately) the three-dimensional problem. Previous two-dimensional solution methods were too

complicated to readily extend to three dimensions. Using the current formulation, the two-dimensional

problem was solved first as a building block toward the three-dimensional solution, and was checked

against the Forbes solution (Forbes, 1999) and finite element analyses (see Part I).

The elimination method (Greenberg, 1998) is appropriate for simple problems. For more complicated
problems such as the two-dimensional analysis of Part I, constrained minimization via Lagrange multipliers

was successfully applied (Preissner and Vinson, 2002a). With the added complexity of a three-dimensional
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Fig. 1. (a) Full non-circular cross-section shape. (b) Details of the geometry.
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Fig. 2. Representation of shell mid-plane for three-dimensional problem.
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analysis, the Lagrange multiplier method failed to solve the problem, and the more advanced technique of

quadratic programming was employed.

Quadratic programming is a technique of optimization used when the objective function (the function to

be extremized; the PE expression in the current case) is of quadratic form, and the equality (or inequality)
constraints are linear. While more robust of a method than either elimination or simple constrained op-

timization, this came at a complexity that forced the use of a pre-written IMSL FORTRAN solution

routine (Anonymous, 1994). Formally, this is the solution to problems of the form:

min
x2Rn

gTx þ 1
2

xTHx ð1Þ

subject to the constraints:

A1x ¼ b1

A2xP b2
ð2Þ

The vectors b1, b2, and g and the matrices H, A1, and A2 are known. The routine used is DQPROG, and

is based on Powell�s implementation of the Goldfarb and Idnani dual quadratic programming algorithm for
convex quadratic programming problems of the form above (see Goldfarb and Idnani, 1983; Powell, 1983,

1985). Additional general and rigorous discussion of this method and its variations can be found in Gill and

Murray (1974) and Fletcher (1981).

In this method, the PE expression is developed as before. Next, the linear terms in the PE expression are

identified (vector g in Eq. (1)), and the Hessian for the PE expression is developed (matrixH in Eq. (1)). The

Hessian is defined as:

Hij ¼
o2V

opi opj
ð3Þ

Thus, the Hessian is a matrix whose coefficients are defined as the second derivatives of the PE function
with respect to each of the variables in the expression. In addition to this, the coefficients for the linear

constraints are developed and placed in the matrix A1. All of the constraints in this problem are equality

constraints, so there is no matrix A2.

Due to the complexity of the expressions and the desire to have a method that was general enough to

handle various displacement trial functions, the filling of the necessary vectors and matrices was written as a

FORTRAN program. Once the inputs were generated, they were passed to the IMSL DQPROG routine.

The output of DQPROG is not only a vector with the solution (the trial function coefficients), but also

includes a vector of constraints that were active in (i.e., influenced) the solution, and a vector containing the
Lagrange multiplier estimates for the final active constraints. The benefits of this formulation are that it is

slightly more concise than the previous constrained optimization and, most importantly, was able to find

solutions where the other methods failed. The drawback to the approach is that it is a ‘‘black box,’’ relying

on a supplied solution technique. In that respect, when the method fails, there is little adjustment that can

be made and other techniques must be sought.

3. Geometry and loads

This paper examines a cylinder defined using the same rounded square cross-section as was analyzed in

Part I (see Figs. 1 and 2 and Preissner and Vinson, 2002a). Again, the use of the modified square section
allows for the maximum use of symmetry (Fig. 1(b)). The composition of the structure is assumed to be a
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composite laminate, and more specifically a composite sandwich. The three-dimensional MPE analysis

includes transverse shear deformation effects but neglects transverse normal stress. Structural coupling (the

inclusion of ð Þ16, ð Þ26, A45, or Bij terms) is not included.

Due to the symmetry, the full square section is reduced to a one-eighth section for analysis. No sym-
metry can be applied in the axial direction for this case. The coordinate system is a right-handed x–s–z
system, with the x-direction along the axis of the cylinder, the s-direction around the circumference from the
top, and the z-direction through the thickness. The cylinder extends in the positive x-direction, and is of
length L. The extent of the initial flat section is from s ¼ 0 to s ¼ S1. The overall extent of the one-eighth
section is s ¼ S2, so that the extent of the circular arc corner is s ¼ ðS2 � S1Þ. The radius of the corner is
designated R, and the constant internal pressure is pi.
Because the structure is composed of straight sections connected by circular arcs, the formulation of the

governing equations is different in those sections. Definitions of strains, stresses, and potential energy ex-
pressions are not common across the junction between the flat and curved section at s ¼ S1. All physical
quantities (e.g., u, v, w, N , M , r, etc.) must be, of course, continuous across this junction. Symmetry
boundary conditions are imposed at the s ¼ 0, s ¼ S2 edges, while matching conditions are imposed at the
junction where s ¼ S1. The x ¼ 0 edge utilizes the C1 clamped boundary condition, while the x ¼ L edge
utilizes the S1 simply supported boundary condition. The specifics of these boundary conditions will be

given in the subsequent section.

4. Strain–displacement relations and boundary conditions

The assumed strain–displacement relations for a flat plate are (neglecting second-order terms; see Vin-

son, 1999 or Ochoa and Reddy, 1992):

ex ¼
ou0
ox

þ z
o�bbx

ox
¼ ex0 þ zjx ey ¼

ov0
oy

þ z
o�bby

oy
¼ ey0 þ zjy ez ¼ 0 ð4aÞ

exz ¼
1

2
�bbx

�
þ ow

ox

�
eyz ¼

1

2
�bby

�
þ ow

oy

�
ð4bÞ

exy ¼
1

2

ou0
oy

�
þ ov0

ox

�
þ z
2

o�bbx

oy

 
þ
o�bby

ox

!
ð4cÞ

The strain–displacement relations for a circular shell of radius R are given as (with the s-direction along
the shell, noting that os ¼ Roh; see Vinson, 1993, Eqs. (15.2), (15.5) and (15.8)):

ex ¼
ou0
ox

þ z
o�bbx

ox
¼ ex0 þ zjx eh ¼

ov0
os

�
þ w

R

�
þ z

o�bbh

os
¼ eh0 þ zjh ez ¼ 0 ð5aÞ

exh0 ¼
1

2

ov0
ox

�
þ ou0

os

�
exz ¼

1

2
�bbx

�
þ ow

ox

�
ehz ¼

1

2
�bbh

�
þ ow

os
� v0

R

�
ð5bÞ

The forms of the trial displacement functions are taken to be the following finite-ordered, two-dimen-

sional power series:
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w1ðs; xÞ ¼
XM
i¼0

XN
j¼0

ai;jsixj w2ðs; xÞ ¼
XM
i¼0

XN
j¼0

bi;jsixj

v1ðs; xÞ ¼
XM
i¼0

XN
j¼0

ci;jsixj v2ðs; xÞ ¼
XM
i¼0

XN
j¼0

di;jsixj

u1ðs; xÞ ¼
XM
i¼0

XN
j¼0

fi;jsixj u2ðs; xÞ ¼
XM
i¼0

XN
j¼0

gi;jsixj

�bbs1ðs; xÞ ¼
XM
i¼0

XN
j¼0

ki;jsixj �bbs2ðs; xÞ ¼
XM
i¼0

XN
j¼0

li;jsixj

�bbx1ðs; xÞ ¼
XM
i¼0

XN
j¼0

pi;jsixj �bbx2ðs; xÞ ¼
XM
i¼0

XN
j¼0

qi;jsixj

ð6Þ

Using different limits on the s and x summations allows different orders of expansions in those directions,
if desired. Note that the comma separating the i and j subscripts in Eq. (6) is only for clarity and does not
represent differentiation. The total number of unknown expansion coefficients will therefore be

10ðM þ 1ÞðN þ 1Þ.
The boundary conditions are as follows. At s ¼ 0 the zero-shear symmetry condition is used, as in the

two-dimensional analysis:

1: v1 0; xð Þ ¼ 0
2: Qs 0; xð Þ ¼ 0

3: �bbs1ð0; xÞ ¼ 0
ð7Þ

Matching conditions are established at s ¼ S1, notably more extensive than those for the two-dimen-
sional case. These boundary conditions are separated into two groups. As these boundary conditions are

being specified on an s ¼ constant edge, the first set consists of boundary conditions that address quantities
normally specified on such edges. These are:

4: w1ðS1; xÞ ¼ w2ðS1; xÞ
5: v1ðS1; xÞ ¼ v2ðS1; xÞ
6: u1ðS1; xÞ ¼ u2ðS1; xÞ

7: �bbs1ðS1; xÞ ¼ �bbs2ðS1; xÞ

8: ½NsðS1; xÞ�1 ¼ ½NsðS1; xÞ�2
9: ½NxsðS1; xÞ�1 ¼ ½NxsðS1; xÞ�2
10: ½MsðS1; xÞ�1 ¼ ½MsðS1; xÞ�2
11: ½MxsðS1; xÞ�1 ¼ ½MxsðS1; xÞ�2
12: ½QsðS1; xÞ�1 ¼ ½QsðS1; xÞ�2

ð8Þ

The second set consists of those boundary conditions that address quantities that are not normally
specified on s ¼ constant edges. Yet, through engineering reasoning, these quantities should remain con-
tinuous in the circumferential direction. These are:

E.C. Preissner, J.R. Vinson / International Journal of Solids and Structures 40 (2003) 1109–1137 1113



13: �bbx1ðS1; xÞ ¼ �bbx2ðS1; xÞ
14: ½NxðS1; xÞ�1 ¼ ½NxðS1; xÞ�2
15: ½MxðS1; xÞ�1 ¼ ½MxðS1; xÞ�2
16: ½QxðS1; xÞ�1 ¼ ½QxðS1; xÞ�2

ð9Þ

At s ¼ S2 there are the same three symmetry conditions as at s ¼ 0:

17: v2ðS2; xÞ ¼ 0
18: QsðS2; xÞ ¼ 0
19: �bbs2ðS2; xÞ ¼ 0

ð10Þ

There are now also boundary conditions in the x-direction. Using a C1 clamped condition (i.e., main-
taining zero lateral and in-plane deflections, zero rotation, and zero in-plane shear resultant; the C2 con-

dition exchanges zero in-plane deflection for zero in-plane normal resultant; see Vinson, 1999, Eq. (3.51)),

the boundary conditions at x ¼ 0 are:

20: w1ðs; 0Þ ¼ 0
21: w2ðs; 0Þ ¼ 0
22: �bbx1ðs; 0Þ ¼ 0
23: �bbx2ðs; 0Þ ¼ 0
24: u1ðs; 0Þ ¼ 0
25: u2ðs; 0Þ ¼ 0
26: Nxs1ðs; 0Þ ¼ 0
27: Nxs2ðs; 0Þ ¼ 0

ð11Þ

The authors see no way to restrict these boundary conditions on the flat and circular portions to

only those portions (i.e., only w1 over 0! S1 and w2 over S1 ! S2). It is not clear that it is necessary to do
so. Using the S1 simple support condition (i.e., maintaining zero lateral and in-plane deflections, zero

moment parallel to the edge, and zero in-plane shear resultant; the S2 condition exchanges zero in-plane

deflection for zero in-plane normal resultant; see Vinson, 1999, Eq. (3.50)), the boundary conditions at

x ¼ L are:

28: w1ðs; LÞ ¼ 0
29: w2ðs; LÞ ¼ 0
30: Mx1ðs; LÞ ¼ 0
31: Mx2ðs; LÞ ¼ 0
32: u1ðs; LÞ ¼ 0
33: u2ðs; LÞ ¼ 0
34: Nxs1ðs; LÞ ¼ 0
35: Nxs2ðs; LÞ ¼ 0

ð12Þ

For both the C1 and S1 boundary conditions, there is no direct specification on the circumferential de-

flection, v. However, v does appear in the evaluation of boundary conditions #26, 27, 34, and 35, due to the
definition of Nxs.
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5. Application of boundary conditions

The number of constraints can not be determined yet (it is not equal to the number of boundary con-

ditions) because, as seen below, most of the above boundary conditions will generate more than one
constraint (unlike the two-dimensional problem).

Applying boundary condition #1 gives that:

v1ð0; xÞ ¼
XM
i¼0

XN
j¼0

ci;jð0Þixj

¼ c0;0 þ c0;1xþ c0;2x2 þ 
 
 
 þ c1;0ð0Þ þ c1;1ð0Þxþ 
 
 
 þ c2;0ð0Þ2 þ c2;1ð0Þ2xþ 
 
 
 ¼ 0

where the term ð0Þ0 � 1. This can also be expressed as:

v1ð0; xÞ ¼
XN
j¼0

c0;jxj ¼ c0;0 þ c0;1xþ c0;2x2 þ 
 
 
 ¼ 0

This is now a polynomial only in x; it must be satisfied for all values of x. The only way this condition can
be satisfied is if all of the coefficients of the polynomial are equal to zero. Therefore, the first boundary

condition results in:

c0;j ¼ 0 j ¼ 0; 1; . . . ;N ð13Þ

This form gives ðN þ 1Þ equations that will be used as constraints on the potential energy expression. Note
that in the quadratic programming method, there are no explicit Lagrange multipliers like there were in the

constrained minimization used in the two-dimensional case. The constraints are incorporated in a different

manner, such that estimates for Lagrange multipliers are an output of the IMSL solution subroutine.

Neglecting ð Þ45 coupling terms, boundary condition #2 gives:

Qsjs¼0 ¼ 2ðA45exz þ A44eszÞ ¼ A44 �bbs1

�
þ ow1

os

�
s¼0

¼ 0 ð14Þ

Using Eq. (6) and noting that power series can be manipulated term-by-term (see Greenberg, 1998, p. 179,

or Arfken, 1966, Section 5.7):

ow1ðs; xÞ
os

¼ o

os

XM
i¼0

XN
j¼0

ai;jsixj ¼
XM
i¼0

XN
j¼0

o

os
ðai;jsixjÞ ¼

XM
i¼1

XN
j¼0

iai;jsi�1xj ð15Þ

Thus:

Qsjs¼0 ¼
XM
i¼0

XN
j¼0

ki;jsixj
 

þ
XM
i¼1

XN
j¼0

iai;jsi�1xj
!

s¼0

¼ 0

where, by taking 0ð0Þ � 1 and 0ði6¼0Þ ¼ 0, we obtain:

XN
j¼0

k0;jxj þ
XN
j¼0

a1;jxj ¼ 0 k0;0 þ k0;1xþ k0;2x2 þ 
 
 
 þ a1;0 þ a1;1xþ a1;2x2 þ 
 
 
 ¼ 0
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Collect like powers of x:

ðk0;0 þ a1;0Þ þ ðk0;1 þ a1;1Þxþ ðk0;2 þ a1;2Þx2 þ 
 
 
 ¼ 0
XN
j¼0

ðk0;j þ a1;jÞxj ¼ 0 ð16Þ

Again, this is a polynomial in x and it must be satisfied for any arbitrary value of x. Thus, the results of
this boundary condition are expressed as the ðN þ 1Þ constraint equations of:

k0;j þ a1;j ¼ 0 j ¼ 0; 1; . . . ;N ð17Þ

Applying boundary condition #3 gives:

�bbs1ð0; xÞ ¼
XM
i¼0

XN
j¼0

ki;jð0Þixj
 !

s¼0

¼ 0 ð18Þ

Similar to boundary condition #1, this can be reduced to:

XN
j¼0

k0;jxj ¼ k0;0 þ k0;1xþ k0;2x2 þ 
 
 
 ¼ 0

With the same logic as in boundary condition #1, the third boundary condition results in the ðN þ 1Þ
constraint equations:

k0;j ¼ 0 j ¼ 0; 1; . . . ;N ð19Þ

It can be seen that the combination of boundary conditions #2 and #3 results in the ðN þ 1Þ equations:

a1;j ¼ 0 j ¼ 0; 1; . . . ;N ð20Þ

which can be used as the constraints, instead of Eq. (17).

The conditions in Eqs. (20), (13) and (19) could be incorporated into the problem by changing the lower

bound on the s summation of w1, v1 and �bbs1 to be as follows:

w1ðs; xÞ ¼
XN
j¼0

a0;jxj þ
XM
i¼2

XN
j¼0

ai;jsixj v1ðs; xÞ ¼
XM
i¼1

XN
j¼0

ci;jsixj �bbs1ðs; xÞ ¼
XM
i¼1

XN
j¼0

ki;jsixj

However, the more consistent way is to include them as constraints. Doing it this way benefits the potential

energy expression by keeping the indices more consistent, which helps writing the calculation scheme in

FORTRAN.
The application of the balance of the boundary conditions is similar, and all are covered in detail in

Preissner (2002). In summary, it is seen that boundary conditions #1–#3 and #20–#25 (those at s ¼ 0 and
x ¼ 0, respectively) could be applied so that they ‘‘zero out’’ certain terms of the power series. However, to
keep the forms of all the power series consistent, these boundary conditions are applied as constraints to the

potential energy expression. Therefore, the ‘‘matching’’ boundary conditions #1–#19 on ‘‘s’’ each generate
ðN þ 1Þ constraints, while the boundary conditions #20–#35 on ‘‘x’’ each generate ðM þ 1Þ constraints. The
total number of unknown trial function coefficients is therefore 10ðM þ 1ÞðN þ 1Þ, while the total number
of constraint equations on the potential energy expression is ½19ðN þ 1Þ þ 16ðM þ 1Þ�. If a fifth-order
polynomial were taken in each direction, this would result in a system of 360 equations in 360 unknowns

that includes 210 constraints.
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6. Development of the potential energy expression

The expression for the total potential energy is now needed. Two expressions, one each for the flat and

curved parts, are combined and integrated with respect to s and x over their respective bounds. Neglecting
any Bij, ð Þ16, ð Þ26, or ð Þ45 coupling in the structure, the expression for the potential energy of the flat plate
portion is taken from Eq. (5.70) in Vinson (1999), while the expression for the circular shell corner is taken

from Eq. (4.20) in Preissner (2002). Using the strain–displacement relations of Eqs. ?(4) and (5), the total

expression is therefore:

V ¼
Z L

0

Z S1

0

A11
2

ou1
ox

� �28<
: þD11

2

o�bbx1

ox

 !2
þA12

ou1
ox

ov1
os

þD12
o�bbx1

ox

o�bbs1

os
þA22
2

ov1
os

� �2

þD22
2

o�bbs1

os

 !2
þA55

1

2
�bbx1


 �2"
þ �bbx1

ow1
ox

þ 1
2

ow1
ox

� �2#

þA44
1

2
�bbs1


 �2"
þ �bbs1

ow1
os

þ 1
2

ow1
os

� �2#
þA66

1

2

ou1
os

� �2"
þ ou1

os
ov1
ox

þ 1
2

ov1
ox

� �2#

þD66
1

2

o�bbx1

os

 !22
4 þ

o�bbx1

os

o�bbs1

ox
þ 1
2

o�bbs1

ox

 !235
9=
;dsdxþ

Z S2

S1

Z L

0

A11
2

ou2
ox

� �28<
: þD11

2

o�bbx2

ox

 !2

þA12
ou2
ox

� �
ov2
os

� ��
þ ou2

ox

� �
w2
R


 ��
þD12

o�bbx2

ox

 !
o�bbs2

os

 !

þA22
2

ov2
os

� �2"
þ 2 ov2

os

� �
w2
R


 �
þ w2

R


 �2#
þD22
2

o�bbs2

os

 !2

þA66
2

ov2
ox

� �2"
þ 2 ov2

ox

� �
ou2
os

� �
þ ou2

os

� �2#
þD66
2

o�bbs2

ox

 !22
4 þ 2

o�bbs2

ox

 !
o�bbx2

os

 !
þ

o�bbx2

os

 !235

þA44
2

ð�bbs2Þ
2

"
þ 2ð�bbs2Þ

ow2
os

� �
� 2 �bbs2


 � v2
R


 �
þ ow2

os

� �2
� 2 ow2

os

� �
v2
R


 �
þ v2

R


 �2#

þA55
2

�bbx2


 �2"
þ 2 �bbx2


 � ow2
ox

� �
þ ow2

ox

� �2#9=
;dxds�

Z L

0

Z S1

0

piw1 dsdx�
Z L

0

Z S2

S1

piw2 dsdx

ð21Þ

Using Eq. (6), Eq. (21) is subsequently expressed in terms of the power series assumed for the dis-

placements. Once all terms have been expressed as power series and integrated, they are substituted back

into the potential energy expression. An overview of the substitution and integration process, and the
resulting potential energy expression is shown in Appendix A; full details are given in Preissner (2002).

7. Application of the quadratic programming method for solution

Looking at the overall problem with a broad focus shows that this effort falls under the larger category
of optimization. Specifically, with an objective function ðV Þ that is quadratic, and with constraints that are

E.C. Preissner, J.R. Vinson / International Journal of Solids and Structures 40 (2003) 1109–1137 1117



only linear, this specific problem is one of quadratic programming. (see e.g., Chapter 10 of Fletcher (1981),

or Gill and Murray (1974).)

In the two-dimensional analysis, the authors had used the IMSL Math Library (double precision)

routine DLSLSF to solve the real, linear, and symmetric system of Ax ¼ b (Anonymous, 1994) that resulted
after setting dðV Þ ¼ 0. Now we turn to the IMSL (double precision) routine DQPROG. The IMSL doc-
umentation regarding this routine is a bit sparse, but fortunately, Chapter 10 of Fletcher (1981) describes

the exact problem DQPROG solves, and even gives an example on pg. 81. Formally, this is an optimization

problem in which the objective function f ðxÞ is quadratic (i.e., V ) and the constraint functions ciðxÞ are
linear. Quadratic programming differs from linear programming in that it is possible to have meaningful

problems in which there are no inequality constraints. Thus, the problem is to find a solution x� to the

equality constraint problem:

min
x

qðxÞ � 1
2

xTHx þ gTx ð22Þ

subject to the constraints:

ATx ¼ b ð23Þ

The matrix H is defined as the Hessian (the matrix of second partial derivatives) of the objective function.

To complete the problem, a FORTRAN program is written to calculate and fill in the coefficients of the

H and A matrices and the g and b vectors. This information is then passed to the particular IMSL routine,

DQPROG, which solves the system. Details of the specific implementation of this routine can be found in

the IMSL documentation (Anonymous, 1994).
To ensure that the input and output of the FORTRAN program is ordered and consistent, a numbering

scheme for the coefficients (variables) and constraints was developed. There are ten different sets of vari-

ables (one set for each power series expansion), and the number of variables in each set and the number

of constraints both vary with the powers of the series in each direction. Because of this, the numbering

scheme is somewhat complicated. The full details of this scheme are not included here, but can be found in

Preissner (2002). Such detailed organization is required so that proper deflections, strains, and stresses are

calculated with the solution.

Because the calculations of the coefficients of the Hessian matrix H are rather involved, there is a
separate subroutine for each power series. The row and column number of any one component of H is

determined by the two variables in the second partial derivative. For example, in the ki;j section, there will
be the term o2V =oki;j opk;l. In any particular analysis, there will be definite values for the powers of the
expansions (M , N ) and the dummy indices (i, j, k, l). The numbering scheme uses these values to determine
a unique number for each variable, i.e., for each combination of power series (a, b, c, etc.) and M , N , i, j, k,
and l. Therefore, the row and column of any particular term is determined by the two unique identifying
numbers of the variables in the denominator. These are continuous functions so that by symmetry, the

coefficient in the location corresponding to o2V =opk;l oki;j would be the same.
In the quadratic programming method of solution, the constraint equations are not explicitly included in

the potential energy expression. They are accounted for in the optimization process by their inclusion in the

A constraint matrix. Thus each constraint must also have a unique number, as this becomes the row

number of the constraint within the Amatrix. As seen previously, the number of constraints also varies with

the powers of the series expansions, similar to the variable numbers. The constraint numbering scheme is

detailed in Preissner (2002) as well. Each constraint contains various unknown expansion coefficients. The

unique identifying number of the particular unknown(s) appearing in the constraint gives the column in A

for entering their respective coefficients. The constraint matrix A will not be symmetric. As all of the
constraints are equal to zero, the b vector is easily filled and becomes the null vector, 0.
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The g vector will be filled with the coefficients of the linear terms of the potential energy expression. This

will be the pressure loading terms in this case, and will only apply to the ai;j and bi;j variables (all others
positions will be equal to zero). The index of the coefficient within g (i.e., its row number) will be determined

as above.
As an example of generating the components of H, find oV =oai;j (Note: in the following, the summation

signs are retained to indicate the range of the index variables. For each partial derivative term, only one

combination of the indices i, j, k, and l is appropriate, not the entire summation.):

oV
oai;j

¼ 2 A44
2

XM
i¼1

XN
j¼0

ði2ÞS2i�11 L2jþ1

ð2i� 1Þð2jþ 1Þ

"
þ A55
2

XM
i¼0

XN
j¼1

ðj2ÞS2iþ11 L2j�1

ð2iþ 1Þð2j� 1Þ

#
ai;j

þ A44
XM
i¼1

XN
j¼0

XM
k¼i
k>i

XN
l>j
l¼0

ðikÞSiþk�1
1 Ljþlþ1

ðiþ k � 1Þðjþ lþ 1Þ

2
66664 þ A55

XM
i¼0

XN
j¼1

XM
k¼i
k>i

XN
l>j
l¼1

ðjlÞSiþkþ1
1 Ljþl�1

ðiþ k þ 1Þðjþ l� 1Þ

3
777775ak;l

þ A44
XM
i¼1

XN
j¼0

XM
k¼0

XN
l¼0

ðiÞSiþk
1 Ljþlþ1

ðiþ kÞðjþ lþ 1Þ

" #
kk;l þ A55

XM
i¼0

XN
j¼1

XM
k¼0

XN
l¼0

ðjÞSiþkþ1
1 Ljþl

ðiþ k þ 1Þðjþ lÞ

" #
pk;l

� pi
XM
i¼0

XN
j¼0

Siþ1
1 Ljþ1

ðiþ 1Þðjþ 1Þ ð24Þ

Next, find the second derivatives (recalling that, because they are continuous, the order of differentiation

does not matter, i.e., o2V =opi opj ¼ o2V =opj opi):

o2V
oa2i;j

¼ 2 A44
2

XM
i¼1

XN
j¼0

ði2ÞS2i�11 L2jþ1

ð2i� 1Þð2jþ 1Þ

"
þ A55
2

XM
i¼0

XN
j¼1

ðj2ÞS2iþ11 L2j�1

ð2iþ 1Þð2j� 1Þ

#
ð25Þ

o2V
oai;j oak;l

¼ A44
XM
i¼1

XN
j¼0

XM
k¼i
k>i

XN
l>j
l¼0

ðikÞSiþk�1
1 Ljþlþ1

ðiþ k � 1Þðjþ lþ 1Þ

2
66664 þ A55

XM
i¼0

XN
j¼1

XM
k¼i
k>i

XN
l>j
l¼1

ðjlÞSiþkþ1
1 Ljþl�1

ðiþ k þ 1Þðjþ l� 1Þ

3
77775

ð26Þ

o2V
oai;j okk;l

¼ A44
XM
i¼1

XN
j¼0

XM
k¼0

XN
l¼0

ðiÞSiþk
1 Ljþlþ1

ðiþ kÞðjþ lþ 1Þ

" #
ð27Þ

o2V
oai;j opk;l

¼ A55
XM
i¼0

XN
j¼1

XM
k¼0

XN
l¼0

ðjÞSiþkþ1
1 Ljþl

ðiþ k þ 1Þðjþ lÞ

" #
ð28Þ

All other components in the ai;j row/column will be zero. Note that if M ¼ N ¼ 2, then there will be nine
ai;j coefficients: a0;0, a0;1, a0;2, a1;0, a1;1, a1;2, a2;0, a2;1, and a2;2. For each of these nine coefficients, there would
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be multiple versions of Eqs. (25)–(28). This process is performed similarly for the other unknown coeffi-

cients.

A FORTRAN program, approximately 2700 lines long, was written to implement this method and

calculate the solution. The program consists of a main routine and 14 subroutines. The main routine
controls the flow of the program and input and output. Input to the program is by a separate ASCII input

file using namelist variables, and controls most aspects of the calculation. Output is to a formatted ASCII

file.

After a solution is generated, information regarding the solution is output. This includes the values of

the unknowns, the number of active constraints (i.e., constraints that actually ‘‘constrained’’ the solution),

the corresponding constraint numbers for the active constraints, and the values of the Lagrange multipliers

for the active constraints. A separate subroutine is then called which uses the generated solution to calculate

the values of the constraints as they are mathematically described. These calculations confirm whether the
constraints were met as intended, and the routine outputs the exact values of the constraints (as calculated

with solution coefficients) to the file.

The final step in the program is to use the coefficients found above to calculate and output the deflec-

tions, rotations, and stresses. Loops in the main program set the ðs; xÞ location and then call a subroutine to
calculate and output the relevant quantities at that spatial location. The values of the deflections, etc. are

not stored in matrices, but rather are calculated on the spot and output immediately. Two loops are used,

one to calculate quantities at constant ‘‘s’’ locations, the other to calculate quantities at constant ‘‘x’’ lo-
cations. Quantities are calculated at three constant s-locations; at or near s ¼ 0, at or near s ¼ S1, and at or
near s ¼ S2. For each constant s-location, the quantities are calculated at 101 x-locations. Quantities are
subsequently also calculated at or near nine constant x-locations, evenly distributed along the length of the
shell (including the very ends). For each constant x-location, the quantities are calculated at 51 points for
06 s6 S1 and at 50 points for S1 < s6 S2.
For each loop that determines a specific ðs; xÞ location, each power series and its derivatives must be

summed for all powers of s and x, i.e., from 0! M for s and 0! N for x. These summation loops take
place in the subroutine that calculates the deflections and stresses. These summations are somewhat tricky,

as all power series coefficients are numbered consecutively in the output solution matrix, yet they must also
increment from the beginning of any one power series to obtain the correct summation. Once the deflec-

tions and their derivatives are calculated, the strains in the structure are calculated, and subsequently the

stresses are found through matrix multiplication of the strain matrix and the Q stiffness matrix.

Note also that to match ABAQUS (or other finite element) stress results, stresses must be calculated at

the same ðs; xÞ location as the integration point for the finite element. This means that stresses can not be
compared exactly at s ¼ 0, S1, and S2 if the finite element grid is symmetric every 45�. For example, if
S1 ¼ 2:0 and R ¼ 1:5, then S2 ¼ S1 þ ð2pR=8Þ ffi 3:1781. If there are eight elements from S1 to S2, and
the integration point is in the middle of the element, then stresses should be calculated at s ¼
S2 � ½ðS2 � S1Þ=16� ¼ 3:1045. Of course, if the integration point is at a different location, this calculation
would need to be adjusted. Thus, all of the derivatives are calculated at the stress point, along with the

quantities w2, v2, �bbx1 ,
�bbs1 ,

�bbx2 ,
�bbs2 , which are calculated at both points.

8. Finite element analysis

The MPE analysis was compared to ABAQUS finite element analyses using both shell and continuum or

‘‘brick’’ elements. Due to the lack of external experimental data, the continuum finite element analysis is

taken to be the ‘‘truth’’ for this study, as the formulation of such continuum elements is based on full three-

dimensional elasticity, without assumptions or neglect of phenomena.
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As with shell elements, ABAQUS has numerous types of continuum elements available. Selection criteria

for continuum elements are covered in detail in Section 14.1.1 of the ABAQUSUser�s Manual (Anonymous,
1997). Based on these choices, the C3D20R element was used. This is a second-order, reduced integration

brick element with 20 nodes. Each node has three displacement degrees of freedom. The shell element was
the S4R four-node, doubly curved element used in Part I. Each node has three displacement and three

rotation degrees of freedom. It is noted that continuum elements are not inherently more accurate for

composite structures than shell elements. However, continuum elements are preferred when transverse

shear effects are significant, when normal stress can not be neglected, or when accurate interlaminar stresses

are required.

During the finite element analyses, grid refinement studies were performed to ensure a converged so-

lution. Depending on the length of the shell, final model sizes ranged between �250,000 and 1.1 million
degrees of freedom. As a check case, a true circular cylinder was modeled with both ABAQUS and the
MPE method. The results showed good agreement between the two methods, as well as with the classic

Timoshenko solution (Timoshenko and Woinowsky-Krieger, 1959).

9. Results and discussion

The specific physical problem examined is the same as that used in Part I (Preissner and Vinson, 2002a),

with the addition of the length dimension. A short shell of 5.0 m and a long shell of 50.0 m in length were

analyzed. The cross-section had 4.0 m flat sides connected with circular arc corners of 2.0 m radius. The

material was a graphite/foam core sandwich of T300/5208 carbon/epoxy and Klegecell foam. The skin

thickness was 5.0 mm and the core thickness was 20 cm. A constant internal pressure of 0.1 MPa was

applied. Specific material properties can be found in the results and discussion section of Part I.

The presented results are the best that were obtainable with the current MPE formulation and solution

methodology. This ‘‘best’’ is as compared to the finite element results; that is, the best MPE results are those
that matched the finite element results the closest. To do this, a range of power series orders was examined,

fromM ¼ N ¼ 3 toM ¼ N ¼ 10. Studies were also performed whereM 6¼ N , but the best results were when
M ¼ N . It was found that at first the results converged with increasing series order, but that above a certain
order they diverged or tended to zero. For the short shells, this occurred after the MPE results had matched

the finite element results. For the long shells, this was not the case, and even the best results are a poor

Lateral Deflection, w , as a Function of Axial Location
and Analysis Type, at Crown, s =0
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Fig. 3. Comparison of lateral deflection, w, all methods, L ¼ 5 m, s ¼ 0:0.
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Lateral Deflection, w , as a Function of Arc Length
and Analysis Type, at x =L /2
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Fig. 4. Comparison of lateral deflection, w, all methods, L ¼ 5 m, x ¼ L=2.

In-Plane Deflection, v , as a Function of Axial Location
and Analysis Type, at s =S 1
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Fig. 5. Comparison of in-plane deflection, v, all methods, L ¼ 5 m, s ¼ S1.

Fig. 6. Comparison of axial deflection, u, all methods, L ¼ 5 m, s ¼ S2.
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Circumferential Rotation, β s , as a Function of Axial Location
and Analysis Type, at s =S 1
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Fig. 7. Comparison of circumferential rotation, bs, all methods, L ¼ 5 m, s ¼ S1.

Axial Rotation, β x , as a Function of Axial Location
and Analysis Type, at Crown, s =S 1
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Fig. 8. Comparison of axial rotation, bx, all methods, L ¼ 5 m, s ¼ S1.

Upper Skin Hoop Stress, σ s_U, as a Function of Axial Location
and Analysis Type, near Crown, at s =0.125, 0.0625
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Fig. 9. Comparison of upper skin hoop stress, rs, all methods, L ¼ 5 m, s ffi 0:0.
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Upper Skin Hoop Stress, σ s_U, as a Function of Arc Length
and Analysis Type, near L /2, at x =2.375, 2.45
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Fig. 10. Comparison of upper skin hoop stress, rs, all methods, L ¼ 5 m, x ffi L=2.

Lower Skin Hoop Stress, σ s_L, as a Function of Axial Location
and Analysis Type, near S 2, at s =3.104, 3.141
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Fig. 11. Comparison of lower skin hoop stress, rs, all methods, L ¼ 5 m, s ffi S2.

Upper and Lower Skin Axial Stress, σ x , as a Function of Axial
Location and Analysis Type, near Crown, at s =0.125, 0.0625
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Fig. 12. Comparison of skin axial stress, rx, all methods, L ¼ 5 m, s ffi 0:0.
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match to the finite elements. Based on their similar variational formulations, better correlation was ex-
pected. More investigation is needed to determine exactly why the MPE method broke down for long shells.

9.1. ‘‘Short’’ shell, L ¼ 5 m

Comparisons of selected deflections are given in Figs. 3–8, and comparisons of selected stresses are

provided in Figs. 9–14. It is seen from these figures that the finite element analyses and the MPE method do

indeed give very similar answers. However, the MPE results results are closer to the ‘‘shell’’ analysis than to

the brick analysis (except near clamped end). This is because the MPE and shell analyses are closer in

formulation, due to their neglect of rz and inclusion of the rotations, than are the shell and brick for-

mulations. The brick formulation predicts the largest deflections and consequently the largest stresses, but

the difference in stresses is not as large as the difference in deflections might lead one to think. This result is
in line with the fact that the brick formulation is more complex with more degrees of freedom.

Upper and Lower Skin Axial Stress, σx , as a Function of Arc Length
and Analysis Type, near L /2, at x =2.375, 2.45
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Fig. 13. Comparison of skin axial stress, rx, all methods, L ¼ 5 m, x ffi L=2.

Core Out-of-plane Shear Stress, σ sz_C, as a Function of Axial Location
and Analysis Type, near L /2, at x =2.375, 2.45
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Fig. 14. Comparison of core shear stress, rsz, all methods, L ¼ 5 m, x ffi L=2.
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The largest difference between the MPE and FEM results are at the ends. This disparity is due to the

difference in the implementation of the boundary conditions in the methods. The MPE method used

theoretical boundary conditions that included force constraints. The FEM analyses have no force condi-

tions, and use only restrictions on displacements.
Unsurprisingly, the largest deflections occur near half-length; the largest rotations occur near (not at)

the ends. The highest stresses are the hoop stresses, but they are not critical as the ultimate tensile and

compressive strength in the fiber direction is 1.5 GPa (1:5� 109 Pa). The upper and lower skin exchange
roles; at s ¼ 0 the upper skin is in tension, while the lower skin is in compression; at s ¼ S2 the roles are
reversed. The hoop stress levels are �10% of ultimate strength, but due to the compressive loading, the

buckling of the inner face in the corner should be examined. It turns out that the skin axial stress is critical

for this structure, as it is (an unrealistic) 100% hoop wrap (see Fig. 12). The ultimate strength of the carbon/

epoxy is only 4� 107 Pa in tension transverse to the fibers, and this is exceeded at the clamped end in the
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Fig. 15. Comparison of lateral deflection, w, all methods, L ¼ 50 m, s ¼ 0:0.

Lateral Deflection, w , as a Function of Arc Length
and Analysis Type, at x =L /2
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Fig. 16. Comparison of lateral deflection, w, all methods, L ¼ 50 m, x ¼ L=2.
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In-Plane Deflection, v , as a Function of Axial Location
and Analysis Type, at s =S 1
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Fig. 17. Comparison of in-plane deflection, v, all methods, L ¼ 50 m, s ¼ S1.

Axial Deflection, u , as a Function of Axial Location
and Analysis Type, at s =S 2
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Fig. 18. Comparison of axial deflection, u, all methods, L ¼ 50 m, s ¼ S2.

Circumferential Rotation, β s , as a Function of Axial Location
and Analysis Type, at s =S 1
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Fig. 19. Comparison of circumferential rotation, bs, all methods, L ¼ 50 m, s ¼ S1.

E.C. Preissner, J.R. Vinson / International Journal of Solids and Structures 40 (2003) 1109–1137 1127



Axial Rotation, β x , as a Function of Axial Location
and Analysis Type, at s =S 1
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Fig. 20. Comparison of axial rotation, bx, all methods, L ¼ 50 m, s ¼ S1.

Upper Skin Hoop Stress, σ s_U, as a Function of Axial Location
and Analysis Type, near Crown, s =0.0625
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Fig. 21. Comparison of upper skin hoop stress, rs, all methods, L ¼ 50 m, s ffi 0:0.

Upper Skin Hoop Stress, β s_U, as a Function of Arc Length
and Analysis Type, near L /2, x =24.875
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Fig. 22. Comparison of upper skin hoop stress, rs, all methods, L ¼ 50 m, x ffi L=2.
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Lower Skin Hoop Stress, σ s_L, as a Function of Axial Location
and Analysis Type, near S 2, at s =3.104, 3.141
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Fig. 23. Comparison of lower skin hoop stress, rs, all methods, L ¼ 50 m, s ffi S2.

Upper and Lower Skin Axial Stress, σ x_U, as a Function of
Axial Location and Analysis Type, near Crown, s =0.0625
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Fig. 24. Comparison of skin axial stress, rx, all methods, L ¼ 50 m, s ffi 0:0.

Upper and Lower Skin Axial Stress, σ x_U, as a Function of
Axial Location and Analysis Type, near L /2, x =24.875
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Fig. 25. Comparison of skin axial stress, rx, all methods, L ¼ 50 m, x ffi L=2.
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FEM analyses. This figure also points up the significant influence of the boundary conditions, where the

MPE boundary conditions are such that the skin stays below its ultimate strength. Stresses at the clamped

end are seen to be much greater than at simply supported end, due to the greater restriction. Hoop stresses

are not as affected by the differing boundary conditions.

9.2. ‘‘Long’’ shell, L ¼ 50 m

For this case, deflection results are shown in Figs. 15–20, and stress results are shown in Figs. 21–26.

These figures are directly comparable to those in Figs. 3–8 and 9–14, in both parameter and location exa-

mined. However, only shell analysis results are used for comparison in this instance, as these results ade-

quately reflect the differences between the MPE and FEM methods.

Even a cursory examination of the plots shows that the agreement between the MPE and FEM results

is not satisfactory. In particular, the MPE results do a very poor job of capturing the behavior of the
shell near the ends. For many parameters, the MPE results come closest to the FEM values only in a

short axial extent near the middle of the overall length (i.e., in the ‘‘membrane’’ response section of the

shell). In that area, the MPE results capture the general circumferential variation of parameters; a

constant axial slice at x ¼ L=2 such as in Fig. 16 shows reasonable agreement. However, variations along
the length (e.g., Figs. 17, 19, 20 or 23) or other variations in circumference (e.g., Fig. 25) show poor

overall correlation.

As with the deflections, the MPE results do a poor job of capturing the axial variation of the stresses

near the ends of the shell. However, in the (membrane) region 15 m < x < 35 m, the MPE results are
reasonably (but not satisfactorily) close to the FEM results. Figs. 24 and 21 show moderate axial agreement

in the central section, while Figs. 22 and 26 show reasonable agreement in the circumferential direction at

x ¼ L=2.

10. Conclusions

As developed for this research, the method provided good accuracy in two dimensions and for short

three-dimensional shells. However, for longer shells, the MPE method could not capture the essential
bending boundary layer behavior of such structures. It is felt that this is not an inherent limitation in the

Core Out-of-plane Shear Stress, σ sz_C, as a Function of
Arc Length and Analysis Type, near L /2, x =24.875
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Fig. 26. Comparison of core shear stress, rsz, all methods, L ¼ 50 m, x ffi L=2.
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MPE method, but is perhaps a combination of non-optimal choice of displacement functions and/or a

solver that was overwhelmed by the number of variables.

It seems higher order power series are needed to properly capture the strong variations of parameters

within the bending boundary layer. The number of unknown variables increases as the square of the power
series order. For the long shells and higher order series, the DQPROG function failed to reach a solution.

This points out the difficulties in using a pre-written solution routine: the source code was unavailable, and

the documentation and diagnostic outputs were inadequate to identify the problem(s). More robust solvers

can be examined in future efforts.

In addition, while the current solution method allows the use of functions that do not a priori meet the

boundary conditions, such a choice was seen to make the problem more complex. Soldatos and Messina

(1998) point out that the basis functions used to represent the displacements should be a complete and

orthonormal set, for best numerical performance. This will be explored in future research.
As formulated, the MPE method is a reasonably useful tool for rapidly screening ideas and concepts for

different cross-sectional shapes (in two dimensions). To the authors� knowledge, this is a unique application
of the MPE method, and it met most goals set out at the beginning of the research.

Despite the unsatisfactory performance on the longer shells, some positive conclusions can be made

about the MPE method: (1) as it uses continuous functions, it allows for the determination of displacements

and stresses at any location in the body; (2) the development of such an analytical method can give one a

greater physical insight into the problem that ‘‘canned’’ analysis tools can not; and (3) once developed, it

was easier and faster to change parameters (within the range of the formulation) than with finite elements.
The flexibility of the FORTRAN program and the use of continuous functions allowed for a tailorable level

of data output.

In addition to the difficulties with the long shells, the MPE method had the following weaknesses:

(1) as currently implemented, it lacks the flexibility to go beyond the limited range of geometric para-

meters that it was developed for; (2) it does not include the important effects of transverse normal stress

and structural coupling (i.e., Bij, etc.), (3) a better method for determining convergence and/or error

analysis is needed, and (4) initial development of the method was labor intensive. However, with the

foundation of the research that has already been completed, these issues could be addressed in an effective
fashion.

As a final note, this research was also a unique analysis of an unconventional structural shape. The

analysis uncovered interesting bending boundary layer behavior that is not explained by classical bending

boundary layer ideas. This boundary layer behavior is more fully explored in a separate paper that deals

with a trade study on the fundamental geometric parameters of the shell (Preissner and Vinson, 2002b).
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Appendix A

Eq. (21) must be expressed in terms of the power series assumed for the displacements. As an example,

the first term is worked out:

du1
dx

� �2
¼

XM
i¼0

XN
j¼1

jfi;jsixj�1
 !2

ðA:1Þ
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The product of two, two-variable power series can be given by:

f ðs; xÞ 
 gðs; xÞ ¼
XM
i¼0

XN
j¼0

ai;jsixj
 ! XM

k¼0

XN
l¼0

bk;lskxl
 !

¼
XM
i¼0

XN
j¼0

XM
k¼0

XN
l¼0

ai;jbk;lsiþkxjþl ðA:2Þ

If this is a ‘‘squared’’ product, then this can be simplified:

½f ðs; xÞ�2 ¼ f ðs; xÞ 
 f ðs; xÞ ¼
XM
i¼0

XN
j¼0

ai;jsixj
 ! XM

k¼0

XN
l¼0

ak;lskxl
 !

¼
XM
i¼0

XN
j¼0

XM
k¼0

XN
l¼0

ai;jak;lsiþkxjþl

¼
XM
i¼0

XN
j¼0

a2i;js
2ix2j þ 2

XM
i¼0

XN
j¼0

XM
k¼i

when k>i

XN
l>j

then l¼0

ai;jak;lsiþkxjþl ðA:3Þ

Note that the rules for the k and l indices above are: (1) the starting value for the k loop is the value of i
for that iteration, and on this starting k loop, the l loop must start out as greater than the value of j, but (2)
when k increments to be >i, then the l loop must start at whatever value the j loop started at.
Therefore, Eq. (A.1) becomes:

du1
dx

� �2
¼
XM
i¼0

XN
j¼1

j2f 2i;js
2ix2j�2 þ 2

XM
i¼0

XN
j¼1

XM
k¼i
k>i

XN
l>j
l¼1

jlfi;jfk;lsiþkxjþl�2 ðA:4Þ

Now, one might as well integrate Eq. (A.4) with respect to x and s:

Z L

0

Z S1

0

A11
2

du1
dx

� �2
dsdx ¼ A11

2

Z L

0

Z S1

0

XM
i¼0

XN
j¼1

j2f 2i;js
2ix2j�2

0
BBBB@ þ 2

XM
i¼0

XN
j¼1

XM
k¼i
k>i

XN
l>j
l¼1

jlfi;jfk;lsiþkxjþl�2

1
CCCCAdsdx

The integral thus becomes:

Z L

0

Z S1

0

A11
2

du1
dx

� �2
dsdx ¼ A11

2

XM
i¼0

XN
j¼1

j2

ð2iþ 1Þð2j� 1Þ f
2
i;jS

2iþ1
1 L2j�1

0
BBBBB@

þ 2
XM
i¼0

XN
j¼1

XM
k¼i
k>i

XN
l>j
l¼1

jl
ðiþ k þ 1Þðjþ l� 1Þ fi;jfk;lS

iþkþ1
1 Ljþl�1

1
CCCCCA ðA:5Þ

The subsequent terms in Eq. (21) are handled in a similar fashion. Once all terms have been expressed as

power series and integrated, they are substituted back into the potential energy expression. The resulting

potential energy expression is shown below. For clarity, dashed lines have been added between major

sections; recall also that the comma in the variable subscripts does not mean differentiation, but is also used
for clarity.
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